The chemistry and biological activities of N-acetylcysteine

Biochim Biophys Acta. 2013 Aug;1830(8):4117-29. doi: 10.1016/j.bbagen.2013.04.016. Epub 2013 Apr 22.

Abstract

Background: N-acetylcysteine (NAC) has been in clinical practice for several decades. It has been used as a mucolytic agent and for the treatment of numerous disorders including paracetamol intoxication, doxorubicin cardiotoxicity, ischemia-reperfusion cardiac injury, acute respiratory distress syndrome, bronchitis, chemotherapy-induced toxicity, HIV/AIDS, heavy metal toxicity and psychiatric disorders.

Scope of review: The mechanisms underlying the therapeutic and clinical applications of NAC are complex and still unclear. The present review is focused on the chemistry of NAC and its interactions and functions at the organ, tissue and cellular levels in an attempt to bridge the gap between its recognized biological activities and chemistry.

Major conclusions: The antioxidative activity of NAC as of other thiols can be attributed to its fast reactions with OH, NO2, CO3(-) and thiyl radicals as well as to restitution of impaired targets in vital cellular components. NAC reacts relatively slowly with superoxide, hydrogen-peroxide and peroxynitrite, which cast some doubt on the importance of these reactions under physiological conditions. The uniqueness of NAC is most probably due to efficient reduction of disulfide bonds in proteins thus altering their structures and disrupting their ligand bonding, competition with larger reducing molecules in sterically less accessible spaces, and serving as a precursor of cysteine for GSH synthesis.

General significance: The outlined reactions only partially explain the diverse biological effects of NAC, and further studies are required for determining its ability to cross the cell membrane and the blood-brain barrier as well as elucidating its reactions with components of cell signaling pathways.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Acetylcysteine / chemistry*
  • Acetylcysteine / metabolism
  • Acetylcysteine / pharmacology*
  • Animals
  • Apoptosis / drug effects
  • Blood-Brain Barrier
  • Cell Cycle / drug effects
  • Cell Membrane / metabolism
  • Humans
  • Mental Disorders / drug therapy
  • Signal Transduction / drug effects

Substances

  • Acetylcysteine